Journal für praktische Chemie Chemiker-Zeitung

© Johann Ambrosius Barth 1998

Synthesis and Structural Characterization of 5-Bromo-2,3-dimethylphenol

André J. Niestroj, Clemens Bruhn, ${ }^{\text {a }}$) and Martin E. Maier
Halle/S., Fachbereich Chemie, Institut für Organische Chemie, a) Institut für Anorganische Chemie, Martin-Luther-Universität Halle-Wittenberg

Received December 17th, 1997

Abstract

Bromination of the disubstituted 4,5-dimethyl-1,3cyclohexanedione (6) followed by oxidation of the resulting 3-bromo-5,6-dimethyl-2-cyclohexen-1-ones (7) gave 5-bromo-

2,3-dimethylphenol (1) together with its constitutional isomer 3. The structure of $\mathbf{1}$ was secured by a x-ray analysis of its tosyl derivative 8 .

In the context of the synthesis of dynemicin A analogs, $[1,2]$ which are of interest as antitumor compounds, 5 -bromo-2,3dimethylphenol (1) was needed as a building block. The literature reveals that this compound can be accessed through a rearrangement reaction from 2,3-dibromo-5,5-dimethyl-cyclohex-2-en-1-one 2 [3]. However, the yield for this route which involves the migration of a methyl group and concomitant loss of the 2-bromine is too low to be of practical value. In addition, the constitutional isomer $\mathbf{3}$ is also being formed [4]. Alternatively, the phenol 1 can be obtained from 1,2-dimethyl3,5 -dinitrobenzene 5 by sequential reductions of the nitro groups and replacement of the amino groups by a hydroxyl function and a bromine atom, respectively (Scheme 1) [5]. While the structural assignment for the two isomers 1 and 3 seems to be plausible, a definitive proof is lacking.

Scheme 1

For these reasons we developed an independent synthesis for 1 and proved its structure by x-ray analysis of its tosyl derivative 8 (Scheme 2). The synthesis commenced with the condensation of (E)-3-methyl-pent-3-en-2-one and diethyl malonate followed by decarboxylation. [6] The resulting
mixture of the cis, trans-disubstituted 1,3-cyclohexanediones 6 was brominated to give a mixture of the bromocyclohexenones 7a-c.[7] The ratios were determined by GC-MS. The fragmentation patterns of $\mathbf{7 a}$ and $\mathbf{7 b}$ differ significantly, allowing a tentative structural assignment. For example, 7a is characterized by strong peaks at $m / z=146$ and 148 due to

Scheme 2
the extrusion of $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}$. This indicates that the carbonyl group is located next to a methyl group. In contrast, the corresponding peaks of $7 \mathbf{b}$ are at $m / z=160$ and 162 [loss of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$].

Subsequent oxidation of the mixture of the bromocyclohexenones 7a-c with bromine in tetrachloromethane gave a mixture of aromatized compounds from which the desired bromophenol 1 could be isolated by distillation and chromatography. The oxidation reaction works less reliable on a larger scale. Other oxidants were examined but they turned out to be less efficient.

In order to prove the constitution of $\mathbf{1}$, it was converted to the tosylate $\mathbf{8}$ with tosyl chloride and potassium hydride as base in THF. Chromatographic purification gave crystals of 8 suitable for x-ray analysis. As indicated in Figure 1, this xray analysis ultimately proves the structure of 1 and thereby also that of 3. In addition, it confirms the structural assignment that was made on the basis of the mass spectra of the congeners $7 a$ and $7 b$. It can be seeen that the bond lengths and angles are in the usual range.

Scheme 3
Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

Experimental

${ }^{1} \mathrm{H}$ NMR: GEMINI 2000 (400 MHz). - ${ }^{13} \mathrm{C}$ NMR: GEMINI $2000(100 \mathrm{MHz})$; all spectra were recorded in CDCl_{3} as solvent. - The signal multiplicity's were determined by means of the APT technique; + for CH or $\mathrm{CH}_{3},-$ for CH_{2}, \times for C . IR: Perkin-Elmer FT-IR Spectrometer SPECTRUM 1000.Melting points: Dr. Tottoli melting point apparatus. - EI-MS: AMD Intectra GmbH AMD 402. - GC-MS: HP 5972A (quadrupol, 70 eV), gas chromatograph HP5890 II (capillary column HP-5MS: $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$), program: $70^{\circ} \mathrm{C}$ injection, 1 min at $70^{\circ} \mathrm{C}$, then 10 degrees $/ \mathrm{min}$ to $250^{\circ} \mathrm{C}$. - Flash chromatography: J. T. Baker silica gel $30-60 \mu \mathrm{~m}$. - TLC: Merck Si $60 \mathrm{~F}_{254}$. - Solvents were distilled prior to use; petroleum ether with a boiling range of $35-65^{\circ} \mathrm{C}$ was used;

THF was distilled from sodium diphenyl ketyl immediately before use. - All reactions were carried out under an atmosphere of argon. - The compound 4,5-dimethyl-1,3-cyclo-hexane- dione was prepared according to the literature [6].

5-Bromo-2,3-dimethylphenol (1) and 3-Bromo-4,5-dimethylphenol (3)

To a solution of 3-bromo-5,6-dimethyl-hex-2-en-1-one (6) (mixture of isomers) ($1.76 \mathrm{~g}, 8.66 \mathrm{mmol}$) in dry $\mathrm{CCl}_{4}(12 \mathrm{ml})$ was added a solution of bromine $(1.38 \mathrm{~g}, 8.66 \mathrm{mmol})$ in dry $\mathrm{CCl}_{4}(10 \mathrm{ml})$. After $15 \mathrm{~min} p$-toluenesulfonic acid monohydrate ($0.20 \mathrm{~g}, 1.05 \mathrm{mmol}$) was added and the mixture was stirred for 48 h at room temperature. The solution was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The resulting oil was purified by distillation ($91-98^{\circ} \mathrm{C} / 1 \mathrm{mbar}$) and subsequently by chromatography (petroleum ether/ethyl acetate, $10: 1$) to give the phenol $1(0.80 \mathrm{~g}, 46 \%)$ as a white solid of m.p. $76-79^{\circ} \mathrm{C}$ and the isomer $3(0.12 \mathrm{~g}, 7 \%)$ as white solid of $m . p .95-99^{\circ} \mathrm{C}$. Performing the reaction on a larger scale gave a somewhat lower yield of 1 .

5-Bromo-2,3-dimethylphenol (1)

TLC (petroleum ether/ethyl acetate, 8:1): $R_{\mathrm{f}}=0.44 .-\mathrm{IR}(\mathrm{KBr})$ $v / \mathrm{cm}^{-1}=3312,1573,1448,840 .-{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.76$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 6.78(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$, aryl-H), $6.89(\mathrm{~d}, J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}$, aryl-H). - ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=$ $11.1,19.8\left(+\right.$, aryl- $\left.\mathrm{CH}_{3}\right), 115.9(+, \mathrm{CH}), 118.6\left(\times, \mathrm{CCH}_{3}\right)$, $121.7(\times, \mathrm{CBr}), 125.3(+, \mathrm{CH}), 140.1\left(\times \mathrm{CCH}_{3}\right), 154.3(\times$, COH) - MS (EI), $m / z(\%): 202$ (100) [$\left.\mathrm{M}^{+},{ }^{81} \mathrm{Br}\right], 121$ (60) [$\mathrm{M}^{+}-\mathrm{Br}$].

3-Bromo-4,5-dimethylphenol (3)

TLC (petroleum ether/ethyl acetate; 8:1): $R_{\mathrm{f}}=0.35 .-\mathrm{IR}(\mathrm{KBr})$ $v / \mathrm{cm}^{-1}=3269,1611,1477,839 .-{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=2.25\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 4.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.59$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, aryl-H), $6.91(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, aryl-H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=18.2,21.3(2+$, aryl$\left.\mathrm{CH}_{3}\right), 116.4(+, \mathrm{CH}), 117.0(+, \mathrm{CH}), 125.3(\times, \mathrm{CBr}), 128.4(\times$, $\left.\mathrm{CCH}_{3}\right), 139.4\left(\times, \mathrm{CCH}_{3}\right), 153.4(\times, \mathrm{COH}) .-\mathrm{MS}(\mathrm{EI}), \mathrm{m} / \mathrm{z}$ (\%): $202(100)\left[\mathrm{M}^{+},{ }^{81} \mathrm{Br}\right], 121$ (70) $\left[\mathrm{M}^{+}-\mathrm{Br}\right]$.

3-Bromo-5,6-dimethyl-cyclohex-2-en-1-one (7)

To an ice-cold, stirred solution of recrystallized triphenylphosphine ($29.5 \mathrm{~g}, 112 \mathrm{mmol}$) in dry benzene (500 ml) were added dropwise 112 ml of a 1 M solution (112 mmol) of bromine in benzene. To the resulting suspension were then added triethylamine ($11.3 \mathrm{~g}, 15.6 \mathrm{ml}, 112 \mathrm{mmol}$) and 4,5-dimethyl1,3 -cyclohexanedione (6) ($14.3 \mathrm{~g}, 102 \mathrm{mmol}$) in dry benzene $(100 \mathrm{ml})$. After being stirred overnight at room temperature, the mixture was filtered through a short pad of celite and the solvent was removed under reduced pressure. The residue was purified using a dry column (diethylether) to give 7 as a mixture of five isomers as detected by GC-MS ($15.72 \mathrm{~g}, 76 \%$). Because of the unstable nature no elemental analysis was performed. TLC (petroleum ether/ethyl acetate, 8:1): $R_{\mathrm{f}}=0.63,0.53,0.47$. - IR (film) $\mathrm{v} / \mathrm{cm}^{-1}=1678,1610 .-{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=0.97\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$, minor isomer), $1.03\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$, minor isomer), $1.08(\mathrm{~d}, J=6.5 \mathrm{~Hz}$,
CH_{3}, major isomer), $1.12\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$, major isomer), $1.62-2.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.32-2.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{3}\right), 6.37-$ 6.41 (m, 1H, olefinic H). - ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta /$ $\mathrm{ppm}=11.5,13.0,16.2,20.3\left(+, \mathrm{CH}_{3}\right), 35.1,37.7,46.0,48.2$ $\left(+, \mathrm{CHCH}_{3}\right), 43.5,45.3,46.4,46.7\left(-, \mathrm{CH}_{2}\right), 132.3,132.7(+$, $\mathrm{CH}), 148.7,148.9(\times, \mathrm{CBr}), 199.7(\times, \mathrm{C}=\mathrm{O}) .-\mathrm{GC}-\mathrm{MS}: t_{\mathrm{ret}}=$ $8.56 \mathrm{~min}, 8.67 \mathrm{~min} ; 204\left[\mathrm{M}^{+},{ }^{81} \mathrm{Br}\right], 148\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}(7 \mathrm{a}\right.$, cis and trans)], $\Sigma=78.4 \% ; 8.62 \mathrm{~min}, 8.73 \mathrm{~min}, 9.00 \mathrm{~min} ; 204$ $\left[\mathrm{M}^{+},{ }^{81} \mathrm{Br}\right], 160\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}(7 \mathrm{~b}, \mathbf{c})\right], \Sigma=21.6 \%$.

5-Bromo-2,3-dimethylphenol-1-(4-methylphenylsulphonyloxy)benzene (8)

To a solution of the phenol $1(380 \mathrm{mg}, 1.89 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ was added potassium hydride ($83 \mathrm{mg}, 2.07 \mathrm{mmol}$) in one portion at room temperature. After stirring for $30 \mathrm{~min}, 4-$ methyl-1-benzenesulfonyl chloride ($720 \mathrm{mg}, 3.76 \mathrm{mmol}$) was added. The mixture was stirred overnight before being quenched with 5 ml of water and diluted with 10 ml of ethyl acetate. After separation of the layers the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash chromatography (petroleum ether/ethyl acetate, 25:1) to give the compound 8 ($450 \mathrm{mg}, 67 \%$) as a white solid, m.p. $98-100^{\circ} \mathrm{C}$ (recrystallized from EtOH). - TLC (petroleum ether/ethyl acetate, 25:1): $R_{\mathrm{f}}=0.2$. $-\mathrm{IR}(\mathrm{KBr}) \mathrm{v} / \mathrm{cm}^{-1}=3051,1599,1473,1345 .-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=1.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.19(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.95(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, bromoaryl-H), 7.18 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, bromoaryl-H), 7.33 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, tosylaryl-H), $7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, tosylarylH). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=12.5,(+$, bromoaryl $\left.-\mathrm{CH}_{3}\right), 19.8$, (+, tosylaryl- $\left.\mathrm{CH}_{3}\right), 21.6(+$, bromoaryl$\mathrm{CH}_{3}$), 118.3 ($\left.\times, \mathrm{CBr}\right), 123.1(+$, bromoaryl-CH), 128.5, 129.9 $(+$, tosylaryl-CH), $131.3(+$, bromoaryl-CH), 129.7, 133.0, $140.7\left(\times, \mathrm{CCH}_{3}\right), 145.7(\times, \mathrm{C}-\mathrm{S}), 148.4(\times, \mathrm{C}-\mathrm{O}) .-\mathrm{MS}(\mathrm{EI})$, $m / z(\%): 356(15)\left[\mathrm{M}^{+},{ }^{81} \mathrm{Br}\right], 155(95)\left[\mathrm{MeArSO}_{2}\right], 91$ (100), [$\left.\mathrm{CH}_{3}-\mathrm{Ar}\right]$.
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrSO}_{3}$ calcd.: C 50.72 H 4.26 S 9.02
(355.2) found: C 50.84 H 4.47 S 9.21 .

Structure determination of 5-Bromo-2,3-dimethylphenol-1-(4-methylphenylsulphonyloxy)benzene

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrSO}_{3}(\mathbf{8}) ; \mathrm{M}_{\mathrm{r}}=355.24$, triclinic, space group $\overline{\mathrm{P}}, \mathrm{a}=$ 8.899 (3), $\mathrm{b}=9.292$ (2), $\mathrm{c}=9.347$ (3) $\AA, \alpha=78.63$ (2), $\beta=$ 89.35 (3), $\gamma=85.28(2)^{\circ}, V=755.1$ (4) $\AA^{3}, Z=2, D_{x}=1.562$ $\mathrm{g} / \mathrm{cm}^{3}, \mu=2.864 \mathrm{~mm}^{-1}, \theta_{\min }=2.22, \theta_{\max }=24.94^{\circ}$, refl. coll.: 3526, indep. refl.: $2634\left(\mathrm{R}_{\mathrm{int}}=0.0676\right)$, Semi-empirical absorption correction via Ψ-scans, $\mathrm{T}_{\min } / \mathrm{T}_{\max }=0.08 / 0.20$, crystal size: $0.6 \times 0.5 \times 0.4 \mathrm{~mm}^{3}, T=298 \mathrm{~K}$. The structure was solved using direct routines (SHELXS-86) and refined using full matrix least squares methods against F^{2} (SHELXL93)[8]. All non H -atoms were refined anisotropically, H -atoms were placed in calculated positions and refined according to the "riding" model with free displacement parameters. 197
parameters were refined against 2632 reflections to final R values of: wR2 (all data): 0.0826 and $\mathrm{R} 1[\mathrm{I}>2 \sigma(\mathrm{I})]: 0.0298$. The largest residual electron density is max/min $0.389 /$ $-0.428 \mathrm{e}^{-3}{ }^{-3}$.

Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data centre as supplementary publication no. CCDC-100962. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax. Int. code +(1223) 336-033; e-mail; deposit@chemcrys.cam.ac.uk).

References

[1] [a] A. G. Myers, M. E. Fraley, N. J. Tom, S. B. Cohen, D. J. Madar, Chem. Biol. 1995, 2, 33; [b] M. D. Shair, T. Y. Yoon, K. K. Mosny, T. C. Chou, S. J. Danishefsky, J. Am. Chem. Soc. 1996, 118, 9509; [c] T. Nishikawa, M. Isobe, T. Goto, Synlett 1991, 393; [d] K. C. Nicolaou, P. Maligres, T. Suzuki, S. V. Wendeborn, W. M. Dai, R. K. Chadha, J. Am. Chem. Soc. 1992, 114, 8890 ; [e] D. Elbaum, J. A. Porco Jr., T. J. Stout, J. Clardy, S. L. Schreiber, J. Am. Chem. Soc. 1995, 117, 211; [f] P. Wender, S. Beckham, J. G. O'Leary, Synthesis 1994, 1278; [g] P. Magnus, Tetrahedron 1994, 50, 1397 ; [h] A. G. Myers, S. B. Cohen, N. J. Tom, D. J. Madar, M. E. Fraley, J. Am. Chem. Soc. 1995, 117, 7574; [i] T. Takahashi, Y. Sakamoto, H. Yamada, S. Usui, Y. Fukazawa, Angew. Chem. 1995, 107, 1443; Angew. Chem., Int. Ed. Engl. 1995, 34, 1345; [j] T. Nishikawa, A. Ino, M. Isobe, Tetrahedron 1994, 50, 1449
[2] F. Boße, A. R. Tunoori, M. E. Maier, Tetrahedron 1997, 53, 9159
[3] A. W. Crossley, N. Renouf, J. Chem. Soc. 1914, 105, 165
[4] A. Fischer, G. N. Henderson, Can. J. Chem. 1983, 61, 1045
[5] A. W. Crossley, J. Chem. Soc. 1913, 103, 2179
[6] L. E. Hinkel, E. E. Ayling, J. F. J. Dippy, T. H. Angel, J. Chem. Soc. 1931, 814
[7] E. Piers, J. R. Grierson, C. K. Lau, I. Nagakura, Can. J. Chem. 1982, 60, 210
[8] G. M. Sheldrick, SHELXL-93, Program for crystal structure refinement, Universität Göttingen, Germany.

Address for correspondence:
Prof. Dr. Martin E. Maier Institut für Organische Chemie
Universität Tübingen
Auf der Morgenstelle 18
D-72076 Tübingen

